

Dedienungs anleitung

Online einkaufen auf omega.com

E-Mail: info@omega.com Die neuesten Produkthandbücher finden Sie unter: www.omegamanual.info

Klemmtemperatursensor

Nichtinvasiver Klemmtemperatursensor mit hoher Genauigkeit

omega.com info@omega.com

Wartung Nordamerika:

USA Hauptsitz: Omega Engineering, Inc.

800 Connecticut Ave. Suite 5N01, Norwalk, CT 06854 Gebührenfrei: +1-800-826-6342 (nur USA und Kanada) Kundendienst: +1-800-622-2378 (nur USA und Kanada) Engineering-Service: +1-800-872-9436 (nur USA und Tel: +1 (203) 359-1660 E-Mail: info@omega.com

Die in diesem Dokument enthaltenen Informationen werden als korrekt erachtet. OMEGA übernimmt jedoch keine Haftung für eventuelle Fehler und behält sich das Recht vor, technische Daten ohne Vorankündigung zu ändern.

Inhaltsverzeichnis

Inhaltsverze	eichnis	3
1) Einfüh	rung	4
1.1 Be	efestigen des HANI™ Klemmtemperatursensors	5
2) Versch	altung	
2.1 8-	poliger Steckverbinder M12	6
2.1.1	Prozesssignale 4–20 mA	6
3) 4–20 m	nA Plug-and-Play	6
4) Konfig	urieren mithilfe von SYNC	7
4.1 Ko	onfigurieren von Eingängen	7
4.1.1	Kalibrierung	9
4.1.2	Einstellen von Alarmen	
4.2 Ko	onfigurieren von Geräteeinstellungen	
4.2.1	Transmission Interval (Sendeintervall)	
4.2.2	Festlegen/Ändern von Kennwörtern	
4.3 Da	atenlogger	14
5) Ausgar	ng als 4—20 mA-Stromschnittstelle	15
51 Se	ng ang 4° 20 mia-5ti omsemmetstene	
511	Sensorzuordnung zum 4–20 mA-Ausgang	16
5.1.1		
6) Techni	sche Daten	17
7) Anhan	g: Eingabeschnittstelle des HANI™ Klemmtemperatursensors	
7.1 Re	egister-Basisadressen	
7.2 H/	ANI™ Klemmtemperatursensor – Eingangsschnittstelle Temperatur	
7.2.1	Deskriptor Sensoreingang	
7.2.2	Parameter zum Temperatursensor	
7.2.3	Parameter zur vom Benutzer vorgenommenen Kalibrierung	21
7.2.4	Sensor IPSO-Definition	
7.3 DI	O-Schnittstelle	23
7.3.1	DIO-Deskriptor	
7.3.2	Definition DIO IPSO	
7.4 Re	egister zum Konfigurieren von Ausgängen	
7.4.1	Anfangswert/Endwert Skala	
7.4.2	Ausgabewerte	
7.4.3	Namen von Ausgängen	
7.5 Ko	ontiguration 4–20 mA-Ausgang	
7.5.1	HIGH Bereich/LOW Bereich	
7.5.2	Storung System	
7.5.3	Typ Ausgalig	28 20
7.5.4		
7.5.5	Skalenanfangswert und -endwert	
7.5.0	4–20 mA-Stromschleifenfehler	
7.6 Kr	onfiguration der Digitalausgänge	
7.6.1	Rate	
7.6.2	Tvp Ausgang	
7.6.3	Status "Aktiv"	
7.6.4	Zuordnung aktiviert	
7.6.5	Ausgangszuordnung	

1) Einführung

Mit der innovativen Technologie von Omega Engineering für die nicht-invasive Temperaturmessung erhalten Sie dieselben Ergebnisse wie mit einem Eintauchsensor, jedoch ohne die Kosten für Installation, Beeinträchtigungen, Austausch und Kalibrierung wie bei einem Eintauchsensor. Mit dem HANI[™] Klemmtemperatursensor wird das Messen der Temperatur einer durch ein Rohr strömenden Flüssigkeit einfacher als je zuvor. Es ist kein Schneiden und kein Schweißen erforderlich. Der Sensor wird einfach außen an das Rohr geklemmt und misst die Temperatur der durch das Rohr strömenden Flüssigkeit. Genauigkeit und Ansprechzeiten des HANI[™] Klemmtemperatursensors entsprechen denen hochmoderner Eintauchtemperatursensoren. Dieser Sensor ist viel einfacher zu installieren und zu warten, und das bei niedrigeren Gesamtkosten.

Der HANI[™] Klemmtemperatursensor liefert ein 4–20 mA-Signal über einen analogen Plug-and-Play-Ausgang. Zudem ist der Sensor mit einem Steckverbinder M12 ausgestattet. Über diesen Steckverbinder können anhand der Omega SYNC Konfigurations-Software über die intelligente Layer N-Schnittstelle programmierbare Funktionen des Sensors konfiguriert werden.

1.1 Befestigen des HANI[™] Klemmtemperatursensors

Der HANI™ Klemmtemperatursensor kann schnell und einfach installiert werden. Führen Sie die folgenden Schritte aus:

Schritt 1: Klemmen Sie den HANI[™] Klemmtemperatursensor an das zu messende Rohr. Setzen Sie den Sensor seitlich oder an die Unterseite eines horizontal verlaufenden Rohres an. Dadurch ist sichergestellt, dass die Messung in einem vollständig mit Flüssigkeit gefüllten Bereich erfolgt.

Schritt 2: Setzen Sie die Klammer in die Kanäle an der Seite der Schließe ein.

Schritt 3: Schließen Sie die Schließe am HANI™ Klemmtemperatursensor.

Damit ist der Klemmtemperatursensor sicher am Rohr befestigt.

2) Verschaltung

2.1 8-poliger Steckverbinder M12

Der HANI™ Klemmtemperatursensor wird an eine 8-polige Steckverbinderbuchse M12 angeschlossen. Die Kommunikation erfolgt als 4–20-mA-Ausgangssignal oder über die intelligente Layer N-Schnittstelle. Der Steckverbinder stellt die erforderlichen Signalleitungen I2C + INTR und die Stromversorgung für Smart Probe-Sensoren bereit.

Hinweis: Die Abbildung unten zeigt die 8-polige Steckverbinderbuchse M12, *nicht* den Steckverbinder am HANI™ Klemmtemperatursensor.

Stift 1

Stift 2

Stift 3

Stift 4

Stift 5

Stift 6

Stift 7

Bezeichnung

Loop -

INTR

SCL

SDA

Abschirmung

Loop +

GND

VCC

Passende 8-polige

2.1.1 **Prozesssignale 4–20 mA**

Zur Nutzung der 4–20 mA-Prozesssignale Stift 8 wird der HANI™ Klemmsensor wie folgt verschaltet.

Bezeichnung	Beschreibung
Schleifenstromquelle [1]	Liefert "Erregungsspannung" an den Sensor, im Normalfall 12–24 V _{DC}
Sensor	Beeinflusst die Stromstärke durch den Stromkreis abhängig vom Messwert
Messumformer [2]	Konvertiert das 4-20-mA-Signal und zeigt oder überträgt den Messwert. Als Umformer werden z. B. PID-Regler oder speicherprogrammierbare Steuerungen verwendet.

Funktion

Rücksignal 4-

20 mA

Interrupt-Signal

I2C-Taktsignal

I2C-Datensignal

Erdung

Abschirmung Quelle 4–20 mA

Erdung

Stromversorgung

Stromversorgung

Beschaltung 4–20 mA

Layer N

Layer N

Layer N

Layer N

4-20 mA

Layer N

Layer N

3) 4–20 mA Plug-and-Play

Der HANI[™] Klemmtemperatursensor kann in nur wenigen Schritten problemlos in Ihr vorhandenes analoges System integriert werden. Gehen Sie zur unmittelbaren Nutzung der Funktion "4–20 mA Plug-and-Play" wie folgt vor:

Schritt 1: Befestigen Sie den HANI™ Klemmtemperatursensor mithilfe des Gurts am zu messenden Rohr.

Schritt 2: Schließen Sie eine 8-polige Buchse M12 an das 4–20-mA-Analogkabel an (siehe Verschaltung HANI[™] Klemmtemperatursensor weiter oben – es werden nur Stift 1 und Stift 6 beschaltet).

Der HANI[™] Klemmtemperatursensor liefert sofort Messwerte.

4) Konfigurieren mithilfe von SYNC

Wichtig: Ein Konfigurieren mithilfe von SYNC ist nur nach Veränderung einer der Größen Rohrdurchmesser, Rohrmaterial, Rohrleitfähigkeit und/oder bei gewünschter Skalierung der Ausgangsmesswerte erforderlich. Stellen Sie sicher, dass die Konfigurations-Software SYNC von Omega heruntergeladen und eingerichtet wurde und ausgeführt wird, bevor Sie fortfahren. Stellen Sie sicher, dass Sie über eine intelligente Layer N-Schnittstelle wie ein IF-001 oder IF-006 verfügen, die mit dem HANI™ Klemmtemperatursensor kompatibel ist.

Wichtig: Wenn der HANI[™] Klemmtemperatursensor über einen 4–20-mA-Anschluss mit Strom versorgt wird und gleichzeitig mithilfe von SYNC konfiguriert werden soll, muss zwischen den Benutzer-PC und den HANI[™] Klemmtemperatursensor ein *USB-Isolator* geschaltet werden. Andernfalls kann es zu falschen Messwerten und/oder zu Beschädigungen des Geräts kommen.

Der HANI[™] Klemmtemperatursensor kann mithilfe der Omega Konfigurations-Software SYNC konfiguriert werden. Dazu muss der HANI[™] Klemmtemperatursensor über eine intelligente Layer N-Schnittstelle an einen Computer angeschlossen sein, auf dem SYNC ausgeführt wird. Der Verbindungsaufbau ist von der konkret verwendeten intelligenten Layer N-Schnittstelle abhängig. Weitere Informationen finden Sie in der Benutzerdokumentation der verwendeten intelligenten Layer N-Schnittstelle.

Nach Herstellung der Verbindung des HANI[™] Klemmtemperatursensors mit SYNC werden auf dem SYNC Bedienbild sofort Messwerte angezeigt.

4.1 Konfigurieren von Eingängen

Ein HANI[™] Klemmtemperatursensor kann mithilfe der Omega Konfigurations-Software SYNC auf die Parameter der konkreten Anwendung konfiguriert werden. Zum Konfigurieren eines an eine intelligente Layer N-Schnittstelle angeschlossenen HANI[™] Klemmtemperatursensors mithilfe von SYNC navigieren Sie in SYNC zur Konfigurations-Registerkarte *Inputs* (Eingänge) [3] der SYNC-Schnittstelle.

	、 、	Configura Tabs	ition					
SYNC - V1.8.0.21074							- 0 X	
Sensing Incredible Int	ernet of Things	Í				Configure Devi	ce 🔛 Capture Data	Menu
+ 🛍 🗘	2 Q	Inputs Outputs D	evice Settings			400V	Device_1A462FA4	Tabs
Device_1A46	FA4	Type TEMP						
SENSING HANI-C-1.55-	A-MA	LUANII Champ	Tommorature		Sensor Temperature		-)
		HANI Clamp	remperature	-	 Sensor 			
					Name	Temperature		
					Measurement Type	HANI Clamp		
					Device Range/Type			
					Туре	User Specified	*	Configuration
					 Parameters 		prove.	Panel
					Pipe Diameter (mm)	38.1	÷	
Device ID	01011A462FA4CEEA				Dine Thickness (mm)	17		
Core	3.59.3.0				Pipe Trickness (mm)	1.2	×	
Firmware	1.13.0.0				Conductivity (W/m-K)	4	÷	
Manufacture Date	03/16/2021				Nama			
Calibration Date	03/16/2021				A given sensor name. Maxin	num length is 16 characters		
Operating Time	00:04:02							J
Calibration Time	00:04:02				Apply Set	tings	Calibration	
User Hours	0				1	NG 11		1
Current Time	12/31/1999 17:58:34	Temperature						
Operating Voltage	3.3 V							
Operating Temperature	25 °C				25.8 °C			
Port/IP Address	COM9							
Bus Address	1							
Lay OEG fo	Anytime Anywhere: er N products - Cloud services r long term data logging	Output_0			4.256 m/	4		

Auf der Konfigurations-Registerkarte **Inputs (Eingänge)** [3] sind alle Optionen zum Konfigurieren der Eingänge des HANI[™] Klemmtemperatursensors aufgeführt. HANI[™] Klemmtemperatursensoren sind werkseitig auf EDELSTAHLROHRE mit Standardwanddicken vorkonfiguriert. Im Fall von Sensoren für Sanitärinstallationen dürfte keine Änderung der Wanddicke erforderlich sein. Sensoren für Industrieinstallationen sind werkseitig auf eine Wanddicke von "Schedule 40" (Standard) vorkonfiguriert. Wenn ein Sensor für ein Rohr aus einem anderen Material als Edelstahl und/oder mit einer nicht standardmäßigen Rohrdicke vorgesehen ist, führen Sie das nachstehende Kalibrierungsverfahren aus. Damit sichergestellt ist, dass der HANI[™] Klemmtemperatursensor genaue Messwerte meldet, müssen der Rohrdurchmesser und die Rohrdicke korrekt eingestellt sein.

Schritt 1: Zum Konfigurieren des Rohrmaterials wählen Sie auf dem Bedienbild von SYNC in Abschnitt "Device Range/Type" (Bereich/Typ Gerät)

in der Dropdown-Liste "Type" (Typ) das entsprechende Metallrohrmaterial gemäß der folgenden Tabelle aus:

Тур	Material
SS	Edelstahl
CS	Kohlenstoffstahl (1 % C)
GS	Verzinkter Stahl
CU	Kupfer
BR	Gelbmessing (70 % Cu / 30 % Zn)
AL	Aluminium
User Specified (Benutzerdefiniert)	Benutzerdefiniert – bei Rohrtyp "User Specified" vom Benutzer vorgebbare Wärmeleitfähigkeit

Sollte das gewünschte Rohrmaterial nicht in dieser voreingestellten Liste aufgeführt sein, können Sie **User Specified** (Benutzerdefiniert) auswählen. In diesem Fall wird das Feld **Conductivity (W/mK)** (Leitfähigkeit) angezeigt. Geben Sie in dieses zusätzliche Feld die Wärmeleitfähigkeit des benutzerdefinierten Rohres ein. Sollten Sie Hilfe bei der Auswahl eines geeigneten Wertes benötigen, wenden Sie sich an Omega Engineering.

Schritt 2: Zum Konfigurieren einer nicht standardmäßigen Rohrdicke ändern Sie in Abschnitt Parameters (Parameter) den Wert **Pipe**

Thickness (mm) (Rohrdicke) auf die entsprechende Wanddicke. Dieser Wert wird in *Millimeter* angegeben.

Schritt 3: Der Wert Pipe Diameter (mm) (Rohrdurchmesser) sollte bereits auf den tatsächlichen Rohraußendurchmesser entsprechend der in der Bestellung angegebenen SKU vorkonfiguriert sein. Bei Verwendung des Sensors an Rohren mit anderen Durchmessern kann dieser Wert geändert werden.

Schritt 4: Nachdem Sie die Eingänge des HANI™ Klemmtemperatursensors konfiguriert haben, klicken Sie auf Apply

Settings (Einstellungen übernehmen), um die Änderungen abzuschließen.

4.1.1 Kalibrierung

Der HANI[™] Klemmtemperatursensor wird werkseitig anhand einer herkömmlichen 2-Punkt-Kalibrierung kalibriert. In einigen Fällen ist jedoch eine *User Calibration* (Kalibrierung durch Benutzer) erforderlich, damit der Sensor bei der konkreten Anwendung eine optimale Genauigkeit erreicht. In der Omega Konfigurations-Software SYNC kann der Benutzer eine Single-Point [4] (1-Punkt-)Kalibrierung oder eine Dual-Point [5] (2-Punkt-)Kalibrierung vornehmen. Damit eine ordnungsgemäße Kalibrierung möglich ist, muss die Temperatur im Rohr bekannt sein oder mithilfe eines Eintauchsensors gemessen werden. Anhand der vom Eintauchsensor gemessenen Temperatur wird der HANI[™] Klemmtemperatursensor anhand eines d 5 eiden folgenden Verfahren kalibriert:

1-Punkt- Kalibrierung durch den Benutzer [4]:	Bei einer 1-Punkt-Kalibrierung wird ein fester, über den gesamten Messbereich angewendeter Offset ermittelt. Dieses Verfahren eignet sich speziell für die Optimierung der Genauigkeit eines einzelnen Messwertes. Gehen Sie wie folgt vor: (1) Bringen Sie den Prozess auf einen bekannten Wert, und geben Sie diesen Wert in das Feld <i>Lo Act</i> (Niedrig-Ist) ein. (2) Klicken Sie auf <i>Capture</i> (Erfassen). Daraufhin wird der Messwert des Sensors erfasst. (3) Klicken Sie auf <i>Calibrate</i> (Kalibrieren), um die Kalibrierung vorzunehmen. Bei Klicken auf <i>Clear</i> <i>Calibration</i> (Kalibrierung löschen) wird der Sensor auf die werkseitige Kalibrierung zurückgesetzt.
2-Punkt- Kalibrierung durch den Benutzer [5]:	Bei einer 2-Punkt-Kalibrierung erfolgt eine über den gesamten Messbereich hinweg lineare Kalibrierung. Dieses Verfahren eignet sich speziell für die Optimierung der Genauigkeit im gesamten Messbereich. Gehen Sie wie folgt vor: (1) Bringen Sie den Prozess auf einen bekannten LOW-Wert, und geben Sie diesen Wert in das Feld <i>Lo Act</i> (LOW-Ist) ein. (2) Klicken Sie auf <i>Capture</i> (Erfassen). Daraufhin wird der LOW-Messwert des Sensors erfasst. (3) Bringen Sie den Prozess nun auf einen bekannten HIGH-Wert, und geben Sie diesen Wert in das Feld <i>Hi Act</i> (HIGH-Ist) ein. (4) Klicken Sie auf <i>Capture</i> (Erfassen). Daraufhin wird der HIGH-Messwert des Sensors erfasst. (5) Klicken Sie auf <i>Calibrate</i> (Kalibrieren), um die Kalibrierung vorzunehmen. Es wird empfohlen, als Prozesswerte LOW- und HIGH-Werte heranzuziehen, die möglichst weit auseinander liegen (z. B. bei 10 % und bei 90 % des Wertebereichs des Prozesse). Bei Klicken auf <i>Clear Calibration</i> (Kalibrierung löschen) wird der Sensor auf die werkseitige Kalibrierung zurückgesetzt.
Low Actual (LOW- Ist) [6]:	Eintauchsensors in der Prozessleitung. Zum Ausführen von 1-Punkt- Kalibrierungen können Sie eine beliebige Temperatur im Prozessbereich des Sensors auswählen. Zum Ausführen von 2-Punkt-Kalibrierungen wird empfohlen, für diesen Wert eine Temperatur am unteren Ende des Prozessbereichs des Sensors auszuwählen (z. B. 20 °C).
Low Reading (LOW- Messwert) [7]:	Der vom HANI™ Klemmtemperatursensor gemessene LOW-Prozesswert
Capture (Erfassen) <mark>[8]</mark> :	Bei Klicken auf die Schaltfläche <i>Capture</i> (Erfassen) wird unmittelbar ein vom HANI™ Klemmtemperatursensor gemeldeter Messwert ermittelt und in das Feld <i>Lo Reading</i> (LOW-Messwert) bzw. in das Feld <i>Hi Reading</i> (HIGH-Messwert) übernommen.
High Actual (HIGH- Ist) [9]:	Der tatsächliche HIGH-Temperaturwert des Prozesses, gemessen mithilfe des Eintauchsensors in der Prozessleitung. Wird bei der 1-Punkt-Kalibrierung nicht verwendet. Zum Ausführen von 2-Punkt-Kalibrierungen wird empfohlen, für diesen Wert eine Temperatur am oberen Ende des Prozessbereichs des Sensors auszuwählen (z. B. 80 °C).
High Reading (HIGH- Messwert) [10]:	Der vom HANI™ Klemmtemperatursensor gemessene HIGH-Prozesswert
Calibrate (Kalibrieren) [11]:	Durch Klicken auf die Schaltfläche <i>Calibrate</i> (Kalibrieren) werden anhand der in den vorherigen Schritten ermittelten Werte <i>Messwerte</i> und <i>Ist-Werte</i> die neue Steigung und der neue Offset berechnet.
Clear Calibration (Kalibrierung löschen) [12]:	Durch Klicken auf diese Schaltfläche werden die zuvor ermittelten Werte für die vom Benutzer vorgenommene Kalibrierung gelöscht, und der HANI™ Klemmtemperatursensor wird auf seine werkseitige Kalibrierung zurückgesetzt.

4.1.2 Einstellen von Alarmen

Sie können Alarme einstellen, indem Sie in SYNC auf der Konfigurations-Registerkarte Inputs (Eingänge) auf

das Symbol des markierten Eingangssignals klicken. Geben Sie in Abschnitt **Condition (Bedingung)** [13] den Alarmtyp und den "Threshold" (Schwellenwert) vor, und wählen Sie dann in Abschnitt **Action** (Aktion) [14] aus, welcher Ausgang aktiviert werden soll. In Abschnitt **Recovery** (Erhaltung) [15] können Sie vorgeben, ob der Alarm selbsthaltend oder nicht selbsthaltend sein soll.

Noters Hinweis: Alarmausgänge sind derzeit nur bei Modellen mit Digitalausgängen verfügbar. Produkte mit Analogausgängen unterstützen derzeit keine Alarmausgänge, können jedoch Benachrichtigungen an die Layer N Cloud senden.

	Define Alarm - Temperature				
13	+ 🛍	Condition: Sensor:	High Threshold	Duration (s)	
14		Above Action:	• 0	for 0	
		Transmit Notification 🔹			
		No Output 👻			
		Change • Transm	nission interval to	0 🔪 (s)	
15		Recovery:	ation (s)		
		Clear Alarm - After	0 And Reset	•	Transmission interval
				Save	Cancel

4.2 Konfigurieren von Geräteeinstellungen

Mithilfe der Omega Konfigurations-Software SYNC können Sie Geräteeinstellungen des HANI[™] Klemmtemperatursensors konfigurieren. Zum Konfigurieren von Geräteeinstellungen navigieren Sie im SYNC Bedienbild zur Konfigurations-Registerkarte **Device Settings (Geräteeinstellungen)** [17].

4.2.1 Transmission Interval (Sendeintervall)

Zum Einstellen des Sendeintervalls rufen Sie auf dem SYNC Bedienbild die Registerkarte "Device Settings" (Geräteeinstellungen) auf. Daraufhin können Sie das Intervall in Abschnitt **Sensor Settings** (Sensoreinstellungen) [16] ändern. Die Einstellung "Transmission Interval" (Sendeintervall) gibt die Zeitspanne zwischen der Erfassung von Messwerten durch den HANI[™] Klemmtemperatursensor vor. Bei einer Kopplung des Sensors mit der Layer N Cloud wird das Sendeintervall auf das in Ihrem Layer N Cloud-Konto vorgegebene minimale Intervall eingestellt.

4.2.2 Festlegen/Ändern von Kennwörtern

Die Daten des HANI[™] Klemmtemperatursensors können mithilfe von SYNC mit einem Kennwortschutz versehen werden. Bei aktiviertem Kennwortschutz für den HANI[™] Klemmtemperatursensor können die Daten im Sensor nur mit entsprechender Autorisierung abgerufen werden. Wenn ein Smart Probe-Sensor kennwortgeschützt ist, muss dieses Kennwort auch in der intelligenten Layer N-Schnittstelle abgelegt werden, damit Daten an die Layer N Cloud übertragen werden können. Gehen Sie zum Einrichten eines Kennworts für den HANI[™] Klemmtemperatursensor wie folgt vor:

Schritt 1: Navigieren Sie auf dem SYNC Bedienbild zur Registerkarte Device Settings (Geräteeinstellungen) [17], und klicken Sie in Abschnitt Sensor Settings (Sensoreinstellungen) [16] auf Set Passwords (Kennwörter festlegen) [18].

Schritt 2: Legen Sie ein "Configuration Password" (Konfigurationskennwort) an. Nach dem Speichern dieses Kennworts werden Sie aufgefordert, auch das "Interface Password"

(Schnittstellenkennwort) zu konfigurieren, damit die Daten des Sensors auch an die Layer N Cloud übertragen werden.

Wichtig: Wenn das Schnittstellenkennwort nicht mit dem Konfigurationskennwort übereinstimmt, werden keine Daten vomHANI™ Klemmtemperatursensor an die Layer N Cloud gesendet.

4.2.2.1 Save Password (Kennwort speichern) [19]

Wenn die in "New Password" (Neues Kennwort) und "Confirm Password" (Kennwort bestätigen) eingegebenen Kennwörter identisch sind, wird durch Klicken auf "Save Password" (Kennwort speichern) der Kennwortschutz der mithilfe von SYNC konfigurierbaren Einstellungen des HANI™ Klemmtemperatursensors aktiviert, und das neue Kennwort wird gespeichert.

4.2.2.2 Clear Password (Kennwort löschen) [20]

Durch Klicken auf die Schaltfläche "Clear Password" (Kennwort löschen) wird der Kennwortschutz des Sensors deaktiviert.

- 4.2.2.3 Login (Anmelden) [21] Geben Sie das Gerätekennwort ein, und klicken Sie auf die Schaltfläche "Login" (Anmelden), um auf die konfigurierbaren Funktionen zuzugreifen.
- 4.2.2.4 Reset (Zurücksetzen) [22] Durch Klicken auf die Schaltfläche "Reset" (Zurücksetzen) wird das aktuelle Kennwort auf dem Gerät gelöscht. Dadurch werden auch alle protokollierten Daten gelöscht.

Device Login	
Please enter the passwo	ord:
The device requires power cyc	led after 3 login attempts.

Nach 3 fehlgeschlagenen Anmeldeversuchen muss das Gerät aus- und wieder eingeschaltet werden, bevor ein erneuter Anmeldeversuch vorgenommen werden kann.

Device Settings	Sensor is locked
Sen	nsor Setting
Sensor is Locked	Login
Warning: Password N	Mismatch. No Cloud Connection

4.3 Datenlogger

Das Bedienbild "Capture Data" (Daten erfassen) zeigt ein Diagramm mit Echtzeitdaten von den verbundenen HANI™ Klemmtemperatursensoren an. Auf dem Bedienbild "Capture Data" (Daten erfassen) finden sich die folgenden Funktionen:

Extract Data (Daten extrahieren)	Zum Extrahieren von Daten aus dem Datenlogger des Geräts
Start/Stop Recording (Aufzeichnung starten/stoppen)	Zum Ein- bzw. Ausschalten der Anzeige der Echtzeitdaten
Export Data to CSV (Daten in CSV exportieren)	Fasst die aufgezeichneten oder extrahierten Daten zusammen und speichert sie in eine CSV-Datei

Hinweis: Wenn der Benutzer zum Bedienbild "Configure Device" (Gerät konfigurieren) wechselt, werden die Daten zurückgesetzt. Die Funktion "Capture Data" (Daten erfassen) von SYNC ist für kurzfristige Datenprotokollierung vorgesehen.

SYNC bietet vier Möglichkeiten zum Navigieren auf dem Bedienbild "Capture Data" (Daten erfassen):

Rechteck zoomen	0	Der Benutzer kann mit der linken Maustaste durch Klicken und Ziehen ein Rechteck auf das Datendiagramm zeichnen und dieses Rechteck vergrößern.
Zoomen mit dem mittleren Mausrad	įdį	Der Benutzer kann das Datendiagramm mithilfe des mittleren Mausrads vergrößern und verkleinern. Dies funktioniert nur mit einer Maus mit entsprechender Mausradfunktion.
Schwenken mit der linken Maustaste	C	Der Benutzer kann mit der linken Maustaste auf die Datengrafik klicken und die Datengrafik in Mausrichtung ziehen.
Zurücksetzen	X	Das Datendiagramm wird auf seine ursprüngliche Position zurückgesetzt.

5) Ausgang als 4–20 mA-Stromschnittstelle

Bei für 4–20 mA-Stromschnittstellen konfigurierten Geräten sind die DIO-Eingänge und die digitalen Ausgänge deaktiviert.

Die weit verbreiteten 4–20 mA-Stromschleifen weisen gegenüber Spannungsschnittstellen eine Reihe von Vorteilen auf:

- Höhere Unempfindlichkeit gegenüber Störungen
- Fähigkeit, die Stromversorgung des Messfühlers anhand des Messstroms zu realisieren vorausgesetzt, die Gesamtleistung beträgt weniger als ca. 3,5 mA x minimale Schleifenspannung (Minimum)
- Automatische Erkennung von Leiterunterbrechungen wenn die Signalleitungen unterbrochen sind, fließt kein Strom, und das Steuerungssystem erkennt die Störung.
- Automatische Erkennung von Kurzschlüssen von Leitern wenn die Signalleitungen einen Kurzschluss aufweisen, übersteigt die Stromstärke die vorgegebenen 20 mA, und das Steuerungssystem erkennt die Störung.

Der für 4–20 mA-Stromschnittstellen konfigurierte HANI™ Klemmtemperatursensor benötigt eine Schleifenspannung von mindestens 8,0 Volt, damit er über den üblichen Messstrom von 4–20 mA versorgt werden kann. In der werkseitigen Vorkonfiguration wird der Temperaturmesswert als 4–20mA-Ausgangssignal ausgegeben.

5.1 Sensorzuordnung

Der HANI[™] Klemmtemperatursensor ist werkseitig so konfiguriert, dass der Temperaturmesswert als 4–20 mA-Ausgangssignal anliegt. Welchem Temperaturbereich diese 4–20 mA entsprechen, wird durch zwei benutzerdefinierte Werte (*Scaling Minimum (Skalenanfangswert*) und Scaling Maximum (Skalenendwert)) festgelegt. Ein Messwert außerhalb des vorgegebenen Bereichs führt zu einem Zustand "Unterhalb Bereich" bzw. "Oberhalb Bereich". Bei der Ausführung von "Factory Reset" wird "Scaling Minimum" (Skalenanfangswert) auf 0 °C und "Scaling Maximum" (Skalenendwert) auf 100 °C eingestellt.

Wenn der Messwert den benutzerdefinierten Wert "Scaling Maximum" (Skalenendwert) übersteigt, liegt ein Zustand "Oberhalb Bereich" vor. Für diesen Fall kann der 4–20 mA-Ausgang so konfiguriert werden, dass er entweder eine Stromstärke "Störung überschreitend" (21,5 mA) oder eine Stromstärke "Störung unterschreitend" (3,8 mA) abgibt. In der Voreinstellung gibt der Sensor eine Stromstärke "Störung überschreitend" (21,5 mA) ab.

Wenn der Messwert den benutzerdefinierten Wert "Scaling Minimum" (Skalenanfangswert) unterschreitet, liegt ein Zustand "Unterhalb Bereich" vor. Für diesen Fall kann der Ausgang so konfiguriert werden, dass er entweder eine Stromstärke "Störung überschreitend" oder eine Stromstärke "Störung unterschreitend" abgibt. In der Voreinstellung gibt der Sensor eine Stromstärke "Störung unterschreitend" (3,8 mA) ab.

Ein Schleifenfehler tritt auf, wenn die an die 4–20 mA-Schleife angelegte Spannung unter die vorgegebene minimale Schleifenspannung fällt und der Ausgang auf eine Stromstärke "Störung unterschreitend" von ca. 3,38 mA gezogen wird.

5.1.1 Sensorzuordnung zum 4–20 mA-Ausgang

Der HANI[™] Klemmtemperatursensor ermöglicht eine Zuordnung der einzelnen 4–20 mA-Ausgänge. Rufen Sie in SYNC die Konfigurations-Registerkarte Outputs (Ausgänge) [23] auf.

23	<u> </u>	Inputs Outputs	Device Settings			Device_1A462FA4
	1	4-20	Output 0	Output Output_0		-
				Name	Output 0	
				4 Device Output Range	/Tune	
				Type	4-20	~
	1			 Output Configuration 	1	
24				Under	3.8	~
	1			Over	21.5	v
				Error	3.8	•
25				 Output Mapping 		
	1			Sensor	Temperature	~
	_			Scaling Minimum	10	
26				Scaling Maximum	50	
20				Scaling Maximum Please consult the selected	d parameter in the user manual	
27						
	J	Temperature		-0.2 °C		
		Cutput_0		3.8 mA		

In Abschnitt Output Configuration (Konfigurierung Ausgang) können Sie die Zustände "Unterhalb", "Oberhalb" und "Störung" des 4–20 mA-Analogausgangs definieren.

Under Jeder Temperaturmesswert unter "Scaling Minimum" (Skalenanfangswert) führt zu einer (Unterhalb) [24]: Stromstärke "Störung unterschreitend".

Over (Oberhalb) Jeder Temperaturmesswert über "Scaling Maximum" (Skalenendwert) führt zu einer [25]: Stromstärke "Störung überschreitend".

In Abschnitt "Output Mapping" (Ausgangszuordnung) können Sie dem Ausgang den gewünschten Skalenbereich für das analoge 4–20 mA-Ausgangssignal zuordnen. Der HANI™ Klemmtemperatursensor ist werkseitig auf einen Temperaturskalenbereich von 0 bis 100 °C eingestellt.

Scaling Minimum Legen Sie die dem Skalenanfangswert zugeordnete Temperatur fest, die ein (Skalenanfangswert) [26]: Ausgangssignal von 4 mA erzeugt. In diesem Beispiel wird bei einer Temperatur von 10 °C ein analoges Ausgangssignal von 4 mA erzeugt. Scaling Maximum Legen Sie die dem Skalenendwert zugeordnete Temperatur fest, die ein (Skalenendwert) [27]: Ausgangssignal von 20 mA erzeugt. In diesem Beispiel wird bei einer Temperatur von 50°C ein analoges Ausgangssignal von 20 mA erzeugt.

6) Technische Daten

EINGANGSSPANNUNG

Spannung: 8 V_{DC} bis 28 V_{DC} (Versorgung über Schleife)

ANALOGES AUSGANGSSIGNAL Stromstärke: 4–20 mA

PROZESSPARAMETER

Prozessmedium: Wasser, Flüssigkeiten auf Wasserbasis (andere auf Anfrage)
 Rohrmaterialien: Metallrohre (andere auf Anfrage)
 Rohraußendurchmesser:
 Sanitärbereich: 1,5 Zoll, 2 Zoll, 2,5 Zoll, 3 Zoll, 4 Zoll
 Industrie: 1 Zoll, 2 Zoll, 2,5 Zoll, 3 Zoll, 4 Zoll nominal
 (andere auf Anfrage)

Bereich Prozesstemperatur: 0 bis 100 °C Flüssigkeit, benutzerskalierbarer Analogausgang

BETRIEBSVERHALTEN

Genauigkeit bei Flüssigkeitsströmung:

Metallrohre Sanitärinstallation: ±0,5 °C

Metallrohre Industrieinstallation: werkseitig ±1,0 °C, durch 1-Punkt- oder 2-Punkt-Kalibrierung höhere Genauigkeit von ±0,5 °C

realisierbar

Ansprechzeit (t63): 5 Sekunden Ansprechzeit (t90): 10 Sekunden

BETRIEBSUMGEBUNG *Umgebungstemperatur Betrieb:* 0 bis 40 °C (32 bis 104 °F) *Schutzart:* IP65 im gesteckten Zustand

MECHANISCH

Abmessungen: 60,3 mm x 64,31 mm x 51,54 mm (B x L x H) (2,38 Zoll x 2,53 Zoll x 2,03 Zoll (B x L x H)) Materialien: PA12, Silikongummi, vernickeltes Messing, Edelstahl

ALLGEMEINES Behördliche Zulassungen: CE UKCA

7.1 Register-Basisadressen

Smart Probe-Geräte nutzen eine gemeinsame Plattformarchitektur mit umfangreichen Überwachungs- und Steuerungsfunktionen über eine Reihe generischer Plattformregister. Auf diese Register kann über I2C-basierte Befehle direkt an die Smart Probe-Geräte oder bei Verwendung von Geräten mit Omega-Schnittstelle über einen Satz Modbus-basierter Register zugegriffen werden. Weitere Informationen finden Sie im Handbuch *Smart Sensor-Geräteschnittstelle*.

Beim Einschalten oder nach dem Zurücksetzen eines Geräts enumeriert jedes Smart Sensor-basierte Gerät mindestens 1 Sensorinstanz. Diese Instanzen werden durch die gerätespezifischen Sensor-Deskriptoren definiert. Die Deskriptoren enthalten Informationen wie Konfigurationsoptionen, Typ des Messwerts und Maßeinheiten der vom Sensor bereitgestellten Messwerte. Ergänzende Informationen über den Sensor werden in sensorspezifischen IPSO-Objektbeschreibungen bereitgestellt. Solche Informationen sind ergänzende Angaben zum Typ der Messwerte, zur Präzision und zur Nachverfolgung von höchsten/niedrigsten Messwerten.

Jeder enumerierte Sensor verfügt über eine Deskriptor-Basisadresse und eine Adresse mit der Sensor-IPSO-/Konfigurationsstruktur abhängig von dem im Gesamtsystem vorliegenden Sensormix.

Sensor	Deskriptorbasis	IPSO/Konfiguration	Mix an enumerierten Sensoren	
			Digitalausgan	4–20 mA
			g	4 20 MA
0	0x0060 (0xf030)	0x08a8 (0xf454)	Temperatur Klemmsensor	
1	0x0068 (0xf034)	0x09a8 (0xf4d4)	DIO	
2	0x0070 (0xf038)	0x0aa8 (0xf554)		
3	0x0078 (0xf03c)	0x0ba8 (0xf5d4)		

7.2 HANI[™] Klemmtemperatursensor – Eingangsschnittstelle Temperatur

Die Eingangsschnittstelle Temperatur des HANI™ Klemmtemperatursensors stellt den aus Wärmestrom und Temperatur berechneten Messwert der Temperatur bereit.

Hinweis: Die HANI[™] Klemmtemperatursensorenwerden zwar werkseitig vorkonfiguriert, müssen jedoch vom Benutzer an die konkrete Installation angepasst werden. Dem Endbenutzer werden Konfigurationsoptionen zur Verfügung gestellt.

7.2.1 Deskriptor Sensoreingang

Offset	Bezeichnung	Wert	Beschreibung
0x00	Messwerttyp	0x37	Temperatur (°C)
0x01	Datentyp/-format	0x06	Gleitkomma
0x02	Konfiguration	0x4?	Materialtyp
0x03	Sensorgerät	0x??	Typ der Verbindung
0x040x08	UOMR	"°C"	Maßeinheiten

7.2.1.1 Messwerttyp des Sensors

Die Temperaturschnittstelle gibt Messwerte der Temperatur in °C aus.

Sensortyp	SI- abgeleitete Einheiten		Messung	
0x37	°C	Temperatur		

7.2.1.2 Typ/Format Sensoreingangsdaten

Der HANI[™] Klemmtemperatursensor unterstützt eine erweiterte Konfiguration und ist werkseitig kalibriert. Alle Datenwerte werden als 32-Bit-Gleitkommawerte zurückgegeben.

HANI™ Klemmtemperatursensor – Typ/Format Sensoreingangsdaten										
7	6	5	4	3	2	1	0			
Smart	Beschreibbar	Werkseitig	Reserviert		Dater	ntyp				
Sensor		kalibriert								
0	0	0	0		0x06 ==	FLOAT				

7.2.1.2.1 Datentyp

Das 4-Bit-Feld "Datentyp" legt den Datentyp des jeweiligen Sensors fest.

7.2.1.2.2 Werkseitig kalibriert

Die Prozesseingänge des HANI™ Klemmtemperatursensors sind werkseitig kalibriert. Durch Löschen dieses Bits wird die werkseitige Kalibrierung deaktiviert.

7.2.1.2.3 Beschreibbar

Das Bit "Beschreibbar" ist auf null gesetzt. Das bedeutet, dass die Sensorwerte nicht überschrieben werden können.

7.2.1.3 Konfigurations-Byte des Sensors

HANI [™] Klemmtemperatursensor – Konfigurations-Byte										
7	6	5	4	3	2	1	0			
Verfügbar	Zugewiesen	Skalierung	Sperren		Sensorber	eich/-typ				
		anwenden								
0	*	?	?		Material (sie	ehe unten)				

7.2.1.3.1 Sensorbereich/-typ

Das Feld "Bereich/Typ" legt den Typ und somit die Wärmeleitfähigkeit des Rohrmaterials fest. Wenn **User Specified** (Benutzerdefiniert) ausgewählt ist, kann die Leitfähigkeit als Sensorparameter ausgewählt werden (siehe unten).

Bereich/Typ	Material	BESCHREIBUNG	Leitfähigkeit (W/m K)
0x00	User Specified		4,0
	(Benutzerdefiniert)		
0x01	SS	Edelstahl	13
0x02	CS	Kohlenstoffstahl	40
0x03	GS	Verzinkter Stahl	40
0x04	CU	Kupfer	401
0x05	BR	Messing	111
0x06	AL	Aluminium	236
0x07			
0x08			
0x09			
0x0a			
0x0b			
0x0c			
0x0d			
0x0e			
0x0f			

7.2.1.3.2 Sperren

Wenn dieses Bit gesetzt ist, wird anstelle der Standardmaßeinheit die benutzerdefinierte Zeichenfolge (maximal 4 Zeichen) als Maßeinheit verwendet.

7.2.1.3.3 Skalierung anwenden

Wenn dieses Bit gesetzt ist, werden die benutzerdefinierten Werte für Offset und Gain zur Anpassung der Sensormesswerte verwendet:

Ergebnis = (Rohmesswert x Gain) + Offset

7.2.1.3.4 Zugewiesen

Das Bit "Zugewiesen" ist immer 0. Weitere Informationen finden Sie in der Dokumentation zur *Smart Sensor-Geräteschnittstelle*.

7.2.1.3.5 Verfügbar

Das Bit "Verfügbar" ist immer 0. Weitere Informationen finden Sie in der Dokumentation zur *Smart Sensor-Geräteschnittstelle*.

7.2.1.4 Byte "Sensorgerät"

Beim HANI™ Klemmtemperatursensor wird das Byte "Sensorgerät" nicht verwendet.

7.2.2 Parameter zum Temperatursensor

Der HANI™ Klemmtemperatursensor verfügt über 3 Sensorparameter, mit denen der Sensor an die konkrete Installation angepasst werden kann.

Auf die Temperaturparameter des HANI[™] Klemmtemperatursensors kann zugegriffen werden, wenn sich das Gerät im *normalen Betriebsmodus* befindet (siehe IPSO-Triggerfunktion).

Parameter	I2C- Register	Modbus- Register	Bezeichnung	Bereich	Schrittgröße	Werkseinstellung	Beschreibung
0	0x08c0	0xf460	Durchmesser	25,4 - 76,2	0,1	38,1	Durchmesser in mm
1	0x08d0	0xf468	Dicke	1,0 - 10,0	0,1	1,7	Dicke in mm
2	0x08e0	0xf470	Leitfähigkeit	0,01 – 500	0,01	4	Leitfähigkeit in W/m K

7.2.2.1 Durchmesser

Der Parameter "Durchmesser" geht in die Berechnung der Temperatur ein. Dieser Parameter muss an die konkrete Installation angepasst werden.

7.2.2.2 Dicke

Der Parameter "Dicke" geht in die Berechnung der Temperatur ein. Dieser Parameter muss an die konkrete Installation angepasst werden.

7.2.2.3 Leitfähigkeit

Die Leitfähigkeit wird in [W/m K] angegeben und geht in die Berechnung der Temperatur ein. Der Parameter "Leitfähigkeit" (Conductivity) ist nur verfügbar, wenn als Material **User Specified** (Benutzerdefiniert) ausgewählt wurde.

7.2.3 Parameter zur vom Benutzer vorgenommenen Kalibrierung

Der Benutzer kann eine 1-Punkt- und eine 2-Punkt-Kalibrierung am HANI™ Klemmtemperatursensor vornehmen.

Auf diese Parameter des HANI[™] Klemmtemperatursensors kann zugegriffen werden, wenn sich das Gerät im Modus *Kalibrierung* befindet (siehe IPSO-Triggerfunktion). Der Kalibrierungswert wird intern beim Durchlaufen der Sequenz der Benutzerkalibrierung berechnet und ist von außen nicht zugänglich.

Parameter	I2C- Register	Modbus- Register	Bezeichnung	Bereich	Schrittgröße	Werkseinstellung	Beschreibung
0	0x08c0	0xf460	LOW- Messwert	0,0 - 100,0	0,1	0,0	Vom HANI™ Sensor gemessener Wert
1	0x08d0	0xf468	LOW-Ist	0,0 - 100,0	0,1	0,0	Tatsächlicher Messwert
2	0x08e0	0xf470	HIGH- Messwert	0,0 - 100,0	0,1	100,0	Vom HANI™ Sensor gemessener Wert
3	0x08f0	0xf478	HIGH-Ist	0,0 - 100,0	0,1	100,0	Tatsächlicher Messwert

7.2.3.1 LOW-Messwert

Die vom HANI-Sensor gemessene Temperatur.

7.2.3.2 LOW-Ist

Die tatsächliche niedrige Temperatur, gemessen von einem externen, unabhängigen Sensor

7.2.3.3 HIGH-Messwert

Die vom HANI-Sensor gemessene Temperatur.

7.2.3.4 HIGH-Ist

Die tatsächliche hohe Temperatur, gemessen von einem externen, unabhängigen Sensor

7.2.4 Sensor IPSO-Definition

Die IPSO-Definition des HANI™ Klemmtemperatursensors gibt Signalbereich, gemessene Min./Max.-Werte und IPSO-Objekttyp an. Die Angaben zum Bereich hängen vom Temperaturtyp ab.

Offset	Bezeichnung	Wert	Beschreibung
0xa8	Sensortyp	3303	Temperatur (°C)
Охаа	Präzision	1	Liefert Messwerte von xxx.x
Oxac	Sensortrigger	??	(siehe unten)
OvbO	Min gomoscon	22	Seit dem letzten Zurücksetzen kleinster
UXDU	wiin. gemessen		gemessener Wert
0vb4	Max gamassan	22	Seit dem letzten Zurücksetzen größter
0XD4	wax. gemessen		gemessener Wert
0xb8	Min. Bereich	0	Niedrigste messbare Temperatur
0xbc	Max. Bereich	100	Höchste messbare Temperatur

7.2.4.1 Präzision

Der Messwert der Temperatur wird auf ±0,1 Grad gerundet.

7.2.4.2 Sensortrigger

Anhand der Funktion "Sensor Trigger" (Sensortrigger) werden die min./max. IPSO-Werte zurückgesetzt sowie der Kalibrierungsprozess gesteuert.

	Sensortrigger											
7	6	5	4	3	2	1	0					
0	0	0	0	0	0	0	Min./Max.					
							zurücksetzen					
15	14	13	12	11	10	9	8					
0	0	Kalibrierung	Kalibrierungsstatus	Kalibriermodus	"Hoch"	"Niedrig"	Kalibrierung					
		zurücksetzen			(HIGH)	(LOW)	starten					
					erfassen	erfassen						

Wenn das Min/Max-Bit auf 1 gesetzt wird, werden die vom IPSO-Prozess aufgezeichneten Min./Max.-Werte zurückgesetzt.

7.2.4.2.1 Sequenz der Kalibrierung durch den Benutzer

Mit der Kalibrierung durch den Benutzer kann der Benutzer kleine Fehler durch die Bereitstellung eines Offsets (1-Punkt-Kalibrierung) oder von Offset und Gain (2-Punkt-Kalibrierung) des gemessenen Temperaturwerts korrigieren. Das Einstellen des Korrekturwerts kann anhand der folgenden Sequenz erfolgen:

 Schreiben Sie 0x0800 in das Register "Triggerfunktion" (Bit "Kalibriermodus" wird gesetzt). Dadurch wird das Gerät in den Kalibriermodus versetzt, und der Zugriff auf das Register "Sensorparameter" wird durch den Zugriff auf das Register "Sensorkalibrierung" ersetzt.

2-Punkt-Kalibrierung

- 2. Lassen Sie den Sensor eine Flüssigkeit mit bekannter Temperatur nahe dem unteren Ende des erwarteten Temperaturbereichs messen, und geben Sie diesen Wert in das Register "LOW-Ist" (0x08c4/0xf462) ein.
- 3. Erfassen Sie den vom HANI-Sensor gemessenen Wert, und geben Sie diesen Wert in das Register "LOW-Messwert" (0x08c0/0xf460) ein. Dieser Prozess kann vereinfacht werden, indem ein Wert von 0x0a00 in das Funktionsregister "Trigger" geschrieben wird. Dadurch erfasst der HANI-Sensor den aktuellen Messwert und speichert ihn als "LOW-Messwert".
- 4. Lassen Sie den Sensor eine Flüssigkeit mit bekannter Temperatur nahe dem oberen Ende des erwarteten Temperaturbereichs messen, und geben Sie diesen Wert in das Register "HIGH-Ist" (0x08cc/0xf466) ein.
- 5. Erfassen Sie den vom HANI-Sensor gemessenen Wert, und geben Sie diesen Wert in das Register "HIGH-Messwert" (0x08c8/0xf464) ein. Dieser Prozess kann vereinfacht werden, indem ein Wert von 0x0c00 in das Funktionsregister "Trigger" geschrieben wird. Dadurch erfasst der HANI-Sensor den aktuellen Messwert und speichert ihn als "HIGH-Messwert".
- Schreiben Sie 0x0900 in das Register "Triggerfunktion" ("Kalibriermodus" und "Kalibrierung starten"). Das Gerät setzt das Bit "Kalibrierungsstatus" und berechnet die Linearisierungswerte "Gain" und "Offset". Nach Abschluss der Kalibrierungsberechnung wird das Bit "Kalibrierungsstatus" gelöscht.
- 7. Schreiben Sie 0x0000 in das Register "Triggerfunktion", um das Gerät in den normalen

Betriebsmodus zurückzusetzen.

1-Punkt-Kalibrierung

- 8. Lassen Sie den Sensor eine Flüssigkeit mit bekannter Temperatur nahe der Mitte des erwarteten Temperaturbereichs messen, und geben Sie diesen Wert in das Register "LOW-Ist" (0x08c4/0xf462) ein.
- 9. Erfassen Sie den vom HANI-Sensor gemessenen Wert, und geben Sie diesen Wert in das Register "LOW-Messwert" (0x08c0/0xf460) ein. Dieser Prozess kann vereinfacht werden, indem ein Wert von 0x0a00 in das Funktionsregister "Trigger" geschrieben wird. Dadurch erfasst der HANI-Sensor den aktuellen Messwert und speichert ihn als "LOW-Messwert".
- 10. Schreiben Sie den Wert aus Schritt 8 in das Register "HIGH-Ist" (0x08cc/0xf466).
- 11. Schreiben Sie 0x0900 in das Register "Triggerfunktion" (Kalibriermodus und "Kalibrierung starten"). Das Gerät setzt das Bit "Kalibrierungsstatus" und berechnet den Wert "Offset". Nach Abschluss der Kalibrierungsberechnung wird das Bit "Kalibrierungsstatus" gelöscht.

Schreiben Sie 0x0000 in das Register "Triggerfunktion", um das Gerät in den normalen Betriebsmodus zurückzusetzen.

Der Korrekturwert kann auf null zurückgesetzt werden, indem 0x2800 ("Kalibrierung zurücksetzen" und Kalibrierungsmodus) in das Register "Trigger" geschrieben wird.

7.3 DIO-Schnittstelle

Die Option "Digitalausgang" unterstützt eine DIO-Schnittstelle. Diese Schnittstelle stellt 2 fest mit den Digitalausgängen verdrahtete Digitaleingänge bereit. Anhand dieser Ausgänge kann der Zustand externer Schalter erkannt (Ausgang AUS) oder der Zustand der Ausgänge überwacht werden.

Noters Hinweis: Bei für 4–20 mA-Ausgänge konfigurierten Sensoren steht die DIO nicht zur Verfügung.

7.3.1 **DIO-Deskriptor**

Offset	Bezeichnung	Wert	Beschreibung
0x00	Sensortyp	0x18	Digital (Bit-zugeordnet)
0x01	Datentyp/-format	0x46	Konfigurierbar, Typ "Gleitkomma"
0x02	Konfiguration	0x23	Skalierung angewendet, Bits 0 und 1 gesetzt
0x03	Sensorgerät	0x0f	DIN-Bits gesetzt/invertiert
0x04	UOMR	"DIN"	Maßeinheiten

7.3.1.1 DIO-Sensortyp

Die Schnittstelle stellt einen Bit-zugeordneten Eingang der 2 Digitalsignalleitungen bereit.

Sensortyp	SI- abgeleitete Einheiten	Messung
0x18	DIN	Bit-zugeordnete Digitaleingänge

7.3.1.2 Typ/Format DIO-Daten

Typ/Format DIO-Daten										
7	6	5	4	3	2	1	0			
Smart	Beschreibbar	Werkseitig	Reserviert		Date	entyp				
Sensor		kalibriert								
0	0	0	0		6 == Gle	itkomma				

7.3.1.2.1 Datentyp

Das 4-Bit-Feld "Datentyp" legt den Datentyp des konkreten Sensors fest (siehe Datentypen).

7.3.1.2.2 Werkseitig kalibriert

Bei DIO-Typen wird das Bit "Werkseitige Kalibrierung" nicht verwendet.

- 7.3.1.2.3 Beschreibbar Das bedeutet, dass der Sensorwert überschrieben werden kann. Wird für DIO-Eingänge nicht verwendet.
- 7.3.1.2.4 Smart Sensor Weitere Informationen finden Sie in der Dokumentation zur *Smart Sensor-Geräteschnittstelle*.

7.3.1.3 Konfiguration der DIO-Eingänge

	Konfiguration der DIO-Eingänge							
7	6	5	4	3	2	1	0	
Verfügbar	Zugewiesen	Skalierung	Sperren		Auswahl U	nterkanal		
		anwenden						
0	0	1	?		0x03 == Bit	s 0 und 1		

7.3.1.3.1 Sperren

Wenn dieses Bit gesetzt ist, wird anstelle der Standard-**DIN** die benutzerdefinierte Zeichenfolge (maximal 4 Zeichen) als Maßeinheit verwendet.

7.3.1.3.2 Skalierung anwenden

Wenn dieses Bit gesetzt ist, werden die benutzerdefinierten Werte für Offset und Gain zur Anpassung der Sensormesswerte verwendet:

Ergebnis = (Rohmesswert x Gain) + Offset

7.3.1.3.3 Zugewiesen

Das Bit "Zugewiesen" ist immer 0. Weitere Informationen finden Sie in der Dokumentation zur *Smart Sensor-Geräteschnittstelle*.

7.3.1.3.4 Verfügbar

Das Bit "Verfügbar" ist immer 0. Weitere Informationen finden Sie in der Dokumentation zur *Smart Sensor-Geräteschnittstelle*.

7.3.1.4 DIO-Gerätekonfiguration

Anhand der DIO-Gerätekonfiguration können die 2 Eingangsbits unabhängig voneinander aktiviert werden. Zudem kann festgelegt werden, ob der Eingang "Aktiv HIGH" ("1", wenn der Eingang nicht auf Massepotenzial liegt) oder "Aktiv LOW" ("1", wenn der Eingang auf Massepotenzial liegt) ist.

	DIO-Gerätekonfiguration							
7	6	5	4	3	2	1	0	
	Poso	nviort		Г				
	nese	IVIEIT		DINI				
0	0	0	0	AKTIVIERT	INVERTIEREN	AKTIVIERT	INVERTIEREN	
0	0	0	0	1	1	1	1	

7.3.1.4.1 Invertieren

Wenn das Bit "Invertieren" gesetzt ist, ist der Eingang "Aktiv LOW".

7.3.1.4.2 Aktiviert

Wenn das Bit "Aktiviert" gesetzt ist, ist der Eingang aktiv.

7.3.2 **Definition DIO IPSO**

Die IPSO-Definition von DIO-Eingängen gibt Signalbereich, gemessene Min./Max.-Werte und IPSO-Objekttyp an.

Offset	Bezeichnung	Wert	Beschreibung
0xa8	Sensortyp	3349	Digital, Bit-zugeordnet
Охаа	Präzision	0	Liefert einen Messwert von xxx
0,426	Soncortriggor	22	Schreiben von 0x0001 erzwingt
Uxac	Sensortingger		Zurücksetzen von Min./Max.
Outo	Min gomoscon	22	Seit dem letzten Zurücksetzen kleinster
0000	wini. gemessen		gemessener Wert
0vh4	Max gamassan	22	Seit dem letzten Zurücksetzen größter
0804	Max. gemessen		gemessener Wert
0xb8	Min. Bereich	0	Kleinster gemessener Wert
0xbc	Max. Bereich	3	Größter gemessener Wert

7.3.2.1 Funktion "Sensor Trigger"

Anhand der Funktion "Sensor Trigger" (Sensortrigger) werden die min./max. IPSO-Werte zurückgesetzt sowie der Kalibrierungsprozess gesteuert.

			Funktion "S	ensor Trigger"			
7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	Min./Max. zurücksetzen
15	14	13	12	11	10	9	8
0	0	0	0	0	0	0	0

Wenn das Min/Max-Bit auf 1 gesetzt wird, werden die vom IPSO-Prozess aufgezeichneten Min./Max.-Werte zurückgesetzt.

Zu den DIO-Eingängen wird keine Kalibrierung durch den Benutzer unterstützt. Alle Bits "Konfiguration" sollten auf 0 gesetzt werden.

7.4 Register zum Konfigurieren von Ausgängen

Ausgänge haben eine gemeinsame Struktur. Diese Struktur besteht aus 3 Feldern, die einer 16-Bit-Ganzzahl ohne Vorzeichen zugeordnet sind und auf die in der Smart Sensor-Registerzuordnung zugegriffen werden kann.

Ausgang	Bezeichnung	Modbus- Adresse	I2C- Adresse	Größe	Typische Beschreibung
0	Deskriptor Ausgang 0	0xf09a	0x0134	uint16	PWM 0 oder 4–20 mA
1	Deskriptor Ausgang 1	0xf09b	0x0136	uint16	PWM 1 (siehe unten)
2	Deskriptor Ausgang 2	0xf09c	0x0138	uint16	Phantom (nicht
					konfigurierbar)
3	Deskriptor Ausgang 3	0xf09d	0x013a	uint16	Phantom (nicht
					konfigurierbar)

Weitere Informationen finden Sie unter dem jeweiligen Ausgangstyp.

7.4.1 Anfangswert/Endwert Skala

Bei Verwendung von "Sensorzuordnung" kann der Benutzer den Wertebereich des Eingangssignals anhand der Parameter "Scaling Minimum" (Skalenanfangswert) and "Scaling Maximum" (Skalenendwert) vorgeben. Für jeden der 4 möglichen Eingänge gibt es ein Paar von Registern.

Sensor	Bezeichnung	Modbus- Adresse	I2C- Adresse	Größe	Beschreibung
0	Skalenanfangswert Ausgang 0	0xf1f0	0x03e0	Gleitkomma	Legt die Untergrenze des Eingangssignals fest
0	Skalenendwert Ausgang 0	0xf1f2	0x03e4	Gleitkomma	Legt die Obergrenze des Eingangssignals fest
1	Skalenanfangswert Ausgang 1	0xf1f4	0x03e8	Gleitkomma	Legt die Untergrenze des Eingangssignals fest
1 Skalen	Skalenendwert Ausgang 1	0xf1f6	0x03ec	Gleitkomma	Legt die Obergrenze des Eingangssignals fest
2	Skalenanfangswert Ausgang 2	0xf1f8	0x03f0	Gleitkomma	Legt die Untergrenze des Eingangssignals fest
2	Skalenendwert Ausgang 2	0xf1fa	0x03f4	Gleitkomma	Legt die Obergrenze des Eingangssignals fest
2	Skalenanfangswert Ausgang 3	0xf1fc	0x03f8	Gleitkomma	Legt die Untergrenze des Eingangssignals fest
3 -	Skalenendwert Ausgang 3	0xf1f2e	0x03fc	Gleitkomma	Legt die Obergrenze des Eingangssignals fest

Wird der Skalenanfangswert oder der Skalenendwert geändert, wird intern die auf den Messwert anzuwendende lineare Transformation berechnet.

7.4.2 Ausgabewerte

Ausgabewerte werden als *Gleitkomma*-Werte ausgegeben uns stellen einen Prozentsatz der Gesamtskala dar. Wenn Ausgabewerte nicht zugeordnet werden, ist der ausgegebene Wert (0 – 100 %) mit dem zurückgemeldeten Wert identisch.

Wenn Ausgabewerte zugeordnet werden, wird der kleinste Eingabewert auf 0 % und der größte Eingabewert auf 100 % umgerechnet (siehe Sensor-Skalierung).

Ausgang	Bezeichnung	Modbus- Adresse	I2C- Adresse	Größe	Beschreibung
0	Wert Ausgang 0	0xf078	0x00f0	Gleitkomma	Prozent Skalenendwert (0–100 %)
1	Wert Ausgang 1	0xf07a	0x00f4	Gleitkomma	Prozent Skalenendwert (0–100 %)
2	Wert Ausgang 2	0xf07c	0x00f8	Gleitkomma	Prozent Skalenendwert (0–100 %)
3	Wert Ausgang 3	0xf07e	0x00fc	Gleitkomma	Prozent Skalenendwert (0–100 %)

7.4.3 Namen von Ausgängen

Jeder Ausgang hat einen Namen. Die vorkonfigurierten Namen für die Ausgänge sind **Output_0** bis **Output_3**. Die vorkonfigurierten Namen können überschrieben werden, z. B. durch "Stack_Lite" oder "Control_Valve". Diese Namen können maximal 16 Zeichen lang sein.

Ausgang	Bezeichnung	Modbus- Adresse	I2C- Adresse	Größe	Beschreibung
0	Name Ausgang 0	0xf078	0xf720	Zeichen[16]	Voreinstellung ist Output_0
1	Name Ausgang 1	0xf07a	0xf728	Zeichen[16]	Voreinstellung ist Output_1
2	Name Ausgang 2	0xf07c	0xf730	Zeichen[16]	Voreinstellung ist Output_2
3	Name Ausgang 3	0xf07e	0xf738	Zeichen[16]	Voreinstellung ist Output_3

Die Namen der Ausgänge bleiben erhalten, bis ein Zurücksetzen auf die Werkseinstellungen erfolgt.

Wir empfehlen dringend:

- **1.** Ersetzen Sie Leerzeichen in Namen durch das Zeichen "_".
- 2. Alle Ausgabenamen eines konkreten Geräts müssen eindeutig sein. Wenn Funktionen mehrfach unterstützt werden, hängen Sie die Zeichenfolge "_x" an, wobei "x" für die Instanz steht. Beispiel: Wenn zwei Ampelleuchten angeschlossen sind, benennen Sie diese mit Stack_Lite_1 und Stack_Lite_2.

7.5 Konfiguration 4–20 mA-Ausgang

Die weit verbreiteten 4–20 mA-Stromschleifen weisen gegenüber Spannungsschnittstellen eine Reihe von Vorteilen auf:

- 1. Höhere Unempfindlichkeit gegenüber Störungen
- 2. Fähigkeit, die Stromversorgung des Messfühlers anhand des Messstroms zu realisieren vorausgesetzt, die Gesamtleistung beträgt weniger als ca. 3,5 mA x minimale Schleifenspannung (Minimum).
- 3. Automatische Erkennung von Leiterunterbrechungen wenn die Signalleitungen unterbrochen sind, fällt die Stromstärke auf 0 mA, und das Steuerungssystem erkennt die Störung.
- **4.** Automatische Erkennung von Kurzschlüssen von Leitern wenn die Signalleitungen einen Kurzschluss aufweisen, übersteigt die Stromstärke die vorgegebenen 20 mA, und das Steuerungssystem erkennt die Störung.

Der auf Stromschnittstelle 4–20 mA konfigurierte HANI™ Klemmtemperatursensor benötigt eine Schleifenspannung von mindestens 8,0 Volt, damit der Sensor über den üblichen Messstrom von 4–20 mA versorgt werden kann. In der werkseitigen Vorkonfiguration wird der Temperaturmesswert als 4–20 mA-Ausgangssignal ausgegeben.

7.5.1 HIGH Bereich/LOW Bereich

Die Konfigurationswerte "High Range" (HIGH Bereich) und "Low Range" (LOW Bereich) legen fest, welches 4–20 mA-Signal erzeugt wird, wenn das Signal über bzw. unter dem vorgegebenen Eingangsbereich liegt. Die Option "Pass-thru" (Durchleitung) bedeutet, dass das Ausgangssignal nicht angeschlossen ist.

Wenn der gemessene Wert das benutzerdefinierte "Input Maximum" (Maximum Eingang) überschreitet, liegt ein Zustand *oberhalb des Messbereich* vor. Der 4–20 mA-Ausgang kann so konfiguriert werden, dass der Ausgang bei Vorliegen eines Zustands "oberhalb des Messbereichs" entweder eine Stromstärke "Störung-HIGH" (21,5 mA) oder eine Stromstärke "Störung-LOW" (3,8 mA) abgibt.

Wenn der Messwert den benutzerdefinierten Wert "Input Minimum" (Minimum Eingang) unterschreitet, liegt ein Zustand *unterhalb des Messbereichs* vor. Für diesen Fall kann der Ausgang so konfiguriert werden, dass der Ausgang entweder eine Stromstärke "Störung-HIGH" oder eine Stromstärke "Störung-LOW" abgibt.

Ein Schleifenfehler tritt auf, wenn die an die 4–20 mA-Schleife angelegte Spannung unter die vorgegebene minimale Schleifenspannung fällt und der Ausgang auf eine Stromstärke "Störung-LOW" von ca. 3,5 mA gezogen wird.

7.5.2 Störung System

Die Einstellung "System Error" (Störung System) legt fest, ob der Ausgang bei Auftreten eines internen Systemfehlers auf eine niedrige oder eine hohe Stromstärke gesteuert wird.

7.5.3 **Typ Ausgang**

Der Ausgangstyp ist fest als 4–20 mA-Ausgang eingestellt.

7.5.4 Zuordnung aktiviert

Wenn diese Option aktiviert ist, gibt das schreibgeschützte Bit "Mapping Enabled" (Zuordnung aktiviert) an, dass der Ausgang optional direkt einem Sensoreingang zugeordnet werden kann. Wenn das Bit "Mapping

Enabled" (Zuordnung aktiviert) deaktiviert ist, wird die Zuordnung nicht unterstützt, und das Feld "Sensor Mapping" (Sensorzuordnung) wird ignoriert.

7.5.5 Ausgangszuordnung

Der Wert "Output Mapping" (Ausgangszuordnung) kann auf "Keine Zuordnung" oder auf "Sensor 0" bis "Sensor 3" eingestellt werden. Wenn "Keine Zuordnung" ausgewählt ist, kann der 4–20 mA-Ausgang direkt angesteuert werden, indem ein Wert von 0 bis 100 % (0 mA bis 24 mA) in den internen Ausgangswert geschrieben wird. Wenn ein Sensor ausgewählt ist, wird der 4-20-mA-Ausgang so skaliert, das der vom Sensor gemessene Wert zwischen "Scale Low" (Skalenanfangswert) und "Scale High" (Skalenendwert) liegt.

Wenn keine Sensorzuordnung vorliegt, wird der Ausgangswert durch die eingeprägte prozentuale Erregung (0 – 100 %) bestimmt. Beispiel: Eine Erregung von 50 % erzeugt einen Ausgangsstrom von 12 mA, eine Erregung von 75 % hingegen einen Ausgangsstrom von (75 / 100) x 24 mA == 18 mA.

7.5.6 Skalenanfangswert und -endwert

Bei Verwendung von "Sensorzuordnung" für einen 4–20 mA-Ausgang kann der Benutzer den Wertebereich des Eingangssignals anhand der Parameter "Scaling Minimum" (Skalenanfangswert) und "Scaling Maximum" (Skalenendwert) vorgeben.

Bezeichnung	Modbus-Adresse	I2C-Adresse	Größe	Beschreibung
Skalenanfangswert	0xf1f0	0x03e0	Gleitkomma	Legt die Untergrenze des
5			Eingangssignals fest	
Skalonondwort	0vf1f2	0x02o4	Gloitkomma	Legt die Obergrenze des
Skalenenuwert	UXIIIZ	0x03e4	Gierckomma	Eingangssignals fest

Hinweis: Aufgrund der Vorgaben für die Schleifenstromversorgung werden Ausgangswerte unter 15 % (3,5 mA) in der Regel auf 3,6 mA gehalten.

7.5.7 4-20 mA-Stromschleifenfehler

Ein Schleifenfehler tritt auf, wenn die an die 4–20 mA-Schleife angelegte Spannung unter die vorgegebene minimale Schleifenspannung fällt und der Ausgang auf eine Stromstärke "Störung-LOW" von ca. 3,5 mA gezogen wird.

7.6 Konfiguration der Digitalausgänge

Die Option "Digitalausgang" stellt zwei Ausgangssignale bereit. Diese Ausgänge können anhand der Register "Output Configuration" (Konfiguration Ausgänge) auf EIN/AUS, PWM oder SERVO konfiguriert werden. Die übrigen Ausgänge werden als Phantomgeräte zugewiesen und sind nicht konfigurierbar.

			K	onfigurati	on	n der Digital	ausg	änge	е							
	7	6		5		4			3		2		1			כ
Konfi					fig	guration Au	sgän	ge								
			Servo	-Bereich		Status "Aktiv"					Ra	te				
			1,0 -	- 2,0 0		LOW	0					100 H	z	0	0	0
			0,5 -	-2,5 1		HIGH	1					10 Hz		0	0	1
												1 Hz		0	1	0
												0,1 H	Z	0	1	1
												50 Hz		1	0	0
												33 Hz		1	0	1
												25 Hz		1	1	0
												20 Hz		1	1	1
	15	14		13		12		1	11		10)	9		8	3
					•	Typ Ausgan	g									
Sen	sorzuordnung					Zuordnu	ng			Тур	Aus	gang				
	Keine	0	-	_		aktivie	t			Nu			0	0	0	0
	Zuordnung	•				Nicht	0			EIN	/Al	JS	0	0	0	1
	Sensor 0	1	0	0		aktiviert				PW	'M		0	0	1	0
	Sensor 1	1	0	1		Aktiviert	1			Ser	vo		0	0	1	1
	Sensor 2	1	1	0												
	Sensor 3	1	1	1												

Die hervorgehobenen Einträge zeigen typische Standardkonfigurationen an.

7.6.1 **Rate**

Die "Rate" gibt die Wiederholungsrate (Frequenz) des Digitalausgangs vor. Bei Ausgängen EIN/AUS wird das Feld "Rate" ignoriert.

7.6.1.1 *PWM-Frequenz*

Der Digitalausgang unterstützt die folgenden PWM-Frequenzen:

PWM- Frequenz	Bezeichnung	Beschreibung
0	100 Hz	Das PWM-Signal hat eine konstante Frequenz von 100 Hz
0	100 112	(Wiederholungsrate von 10 ms) mit Tastgrad 0–100 %.
1 10 Цт	10 Uz	Das PWM-Signal hat eine konstante Frequenz von 10 Hz
T	10 HZ	(Wiederholungsrate von 100 ms) mit Tastgrad 0–100 %.
2	1 Ц-	Das PWM-Signal hat eine konstante Frequenz von 1 Hz
2	1 HZ	(Wiederholungsrate von 1 s) mit Tastgrad 0–100 %.
3	0,1 Hz	Das PWM-Signal hat eine konstante Frequenz von 0,1 Hz
		(Wiederholungsrate von 10 s) mit Tastgrad 0–100 %.

7.6.1.2 SERVO-Rate

Smart Sensor-Sonden unterstützen die folgenden SERVO-Frequenzen:

PWM- Frequenz	Bezeichnung	Beschreibung
0	100 Hz	Das PWM-Signal hat eine konstante Frequenz von 100 Hz (Wiederholungsrate von 10 ms) mit Tastgrad 0–100 %.
4	50 Hz	Das PWM-Signal hat eine konstante Frequenz von 50 Hz (Wiederholungsrate von 20 ms) mit Tastgrad 0–100 %.

7.6.2 Typ Ausgang

Smart Sensor-Sonden unterstützen die Ausgänge NULL (0), EIN/AUS (1), PWM (2) und SERVO (3). Ein auf NULL eingestellter Ausgang bleibt in einem hochohmigen Zustand. Bei einem auf EIN/AUS eingestellten Ausgang haben die Werte "Rate" und "Servo Range" keine Wirkung. Bei einem auf SERVO eingestellten Ausgang ist der Arbeitszyklus begrenzt, und das Ausgangssignal ist entweder 0,5 – 2,5 ms oder 1,0 – 2,0 ms, abhängig vom Bit "Servo Range".

7.6.3 Status "Aktiv"

Smart Sensor-Digitalausgänge können auf "Aktiv HIGH" oder "Aktiv LOW" konfiguriert werden. Bei Einstellung auf "1" (Aktiv HIGH) wird der Ausgang als "aktiviert" angesehen, wenn er eine hohe Impedanz aufweist. Bei Einstellung auf "0" (Aktiv LOW) wird der Ausgang als "aktiviert" angesehen, wenn er eine niedrige Impedanz (Spannung ca. 0,0 V) aufweist. Werkseitig ist dieser Wert auf "0" (LOW) eingestellt.

7.6.4 Zuordnung aktiviert

Das schreibgeschützte Bit "Mapping Enabled" (Zuordnung aktiviert) gibt an, dass der Ausgang optional direkt einem Sensoreingang zugeordnet werden kann. Die Zuordnung erfolgt anhand des Feldes "Sensor Mapping" (Sensorzuordnung). Wenn das Bit "Mapping Enabled" (Zuordnung aktiviert) deaktiviert ist, wird die Zuordnung nicht unterstützt, und das Feld "Sensor Mapping" (Sensorzuordnung) wird ignoriert.

7.6.5 Ausgangszuordnung

Der Wert "Output Mapping" (Ausgangszuordnung) kann auf "Keine Zuordnung" oder auf "Sensor 0" bis "Sensor 3" eingestellt werden. Wenn "Keine Zuordnung" ausgewählt ist, kann der Ausgang direkt angesteuert werden, indem ein Wert von 0 bis 100 % in den internen Ausgangswert geschrieben wird. Wenn ein Sensor ausgewählt ist und die Hardware die Zuordnung unterstützt, folgt der Ausgang dem Messwert des ausgewählten Sensors, skaliert anhand der Werte "Output Minimum" und "Output Maximum".

Wenn "Output Mapping" (Ausgangszuordnung) für PWM-Ausgänge aktiviert ist, werden die Skalierungswerte so interpretiert, dass ein Eingangssignal mit oder unter dem Wert "Scaling Low" (Skalenanfangswert) zu einem Ausgangssignal mit einem PWM-Tastgrad von 0 % und ein Eingangssignal mit oder über dem Wert "Scaling High" (Skalenendwert) zu einem PWM-Tastgrad von 100 % führt.

Wenn "Output Mapping" (Ausgangszuordnung) für SERVO-Ausgänge aktiviert ist, werden die Skalierungswerte so interpretiert, dass ein Eingangssignal mit oder unter dem Wert "Scaling Low" (Skalenanfangswert) zu einem Ausgangssignal mit minimaler Pulsbreite (0,5 oder 1,0 ms) und ein Eingangssignal mit oder über dem Wert "Scaling High" (Skalenendwert) zu einer maximalen Pulsbreite (2,0 oder 2,5 ms) führt.

GARANTIE/HAFTUNGSAUSSCHL

OMEGA ENGINEERING, INC. garantiert, dass dieses Gerät über einen Zeitraum von **13 Monaten** ab Kaufdatum frei von Material- und Herstellungsfehlern ist. Die GARANTIE von OMEGA umfasst abgesehen von der üblichen **Produktgarantie von einem (1) Jahr** einen (1) zusätzlichen Monat, um die Bearbeitungs- und Lieferzeit der Garantieleistungen zu gewährleisten. Auf diese Weise wird sichergestellt, dass OMEGA-Kunden die maximale Garantie für jedes Produkt erhalten.

Falls das Gerät Störungen aufweist, muss es zur Überprüfung an das Werk zurückgesandt werden. Die Kundendienstabteilung von OMEGA stellt nach telefonischem oder schriftlichem Antrag unverzüglich eine Nummer für autorisierte Rücksendungen (AR) aus. Wenn bei der Überprüfung durch OMEGA festgestellt wird, dass das Gerät defekt ist, wird dieses kostenlos repariert oder ersetzt. Die GARANTIE VON OMEGA erstreckt sich nicht auf Mängel, die durch die Handlungen des Käufers verursacht werden. Diese umfassen unter anderem: falsche Handhabung, unsachgemäßer Anschluss, Betrieb außerhalb der Auslegungsgrenzen, unsachgemäße Reparatur und unbefugte Änderungen am Gerät. Diese GARANTIE ERLISCHT, wenn nachgewiesen werden kann, dass am Gerät nicht autorisierte Änderungen vorgenommen wurden, wenn das Gerät nachweislich Schäden aufweist, die als Folge von übermäßiger Korrosion, Strom, Hitze, Feuchtigkeit oder Vibration, unsachgemäßer Spezifikation, missbräuchlicher Verwendung, Fehlbedienung oder aufgrund anderer Betriebsbedingungen außerhalb der Kontrolle von OMEGA entstanden sind. Zu den Komponenten, bei denen der Verschleiß nicht von der Garantie abgedeckt wird, gehören unter anderem Kontaktstellen, Sicherungen und Triacs.

OMEGA macht gerne Vorschläge zur Verwendung der verschiedenen Produkte. OMEGA übernimmt jedoch weder die Verantwortung für Auslassungen oder Fehler noch die Haftung für Schäden, die aus der Verwendung seiner Produkte gemäß den von OMEGA zur Verfügung gestellten mündlichen oder schriftlichen Informationen entstanden sind. OMEGA garantiert lediglich, dass die vom Unternehmen hergestellten Teile wie angegeben und frei von Mängeln sind. OMEGA GIBT KEINE SONSTIGEN ERKLÄRUNGEN ODER GARANTIEN JEGLICHER ART, WEDER AUSDRÜCKLICH NOCH STILLSCHWEIGEND, MIT AUSNAHME VON RECHTSMÄNGELN. ALLE IMPLIZIERTEN GARANTIEN, EINSCHLIESSLICH JEGLICHER GARANTIEN IM HINBLICK AUF DIE MARKTGÄNGIGKEIT SOWIE DIE EIGNUNG FÜR EINEN BESTIMMTEN ZWECK, SIND HIERMIT AUSGESCHLOSSEN. HAFTUNGS-

BESCHRÄNKUNG: Die hierin aufgeführten Rechtsbehelfe des Käufers sind exklusiv, und die gesamte Haftung von OMEGA in Bezug auf diesen Auftrag, unabhängig davon, ob dieser auf Vertrag, Garantie, Fahrlässigkeit, Entschädigung, strenger Haftung oder sonstigem basiert, darf den Kaufpreis der Komponente, auf welche sich die Haftung bezieht, nicht überschreiten. OMEGA haftet in keinem Fall für Folge-, Zufalls- oder Sonderschäden.

BEDINGUNGEN: Von OMEGA verkaufte Geräte sind nicht für die folgenden Verwendungszwecke ausgelegt bzw. dürfen nicht auf folgende Weise verwendet werden: (1) als "elementare Komponente" gemäß 10 CFR 21 (NRC), in einer Kernenergieanlage oder bei im Zusammenhang mit Kernenergie stehenden Verfahren oder (2) in medizinischen Anwendungen oder im Umgang mit Menschen. Sollten Produkte in einer Kernenergieanlage oder bei mit Kernenergie

RÜCKSENDUNGSANTRÄGE/ANFRAGEN

Senden Sie Garantie- und Reparaturanträge/Anfragen an die OMEGA-Kundendienstabteilung. VOR EINER RÜCKSENDUNG VON PRODUKTEN AN OMEGA MUSS DER KÄUFER EINE NUMMER FÜR AUTORISIERTE RÜCKSENDUNGEN (AR) BEI DER OMEGA-KUNDENDIENSTABTEILUNG BEANTRAGEN (UM VERZÖGERUNGEN BEI DER BEARBEITUNG ZU VERMEIDEN). Die zugewiesene AR-Nummer muss dann außen auf dem Rücksendungspaket und bei jeder Korrespondenz angegeben werden.

Der Käufer trägt die Versandkosten und ist für Fracht, Versicherung sowie ordnungsgemäße Verpackung zur Vermeidung von Transportschäden verantwortlich.

BEI RÜCKSENDUNGEN INNERHALB DER **GARANTIEZEIT** halten Sie die folgenden Informationen bereit, BEVOR Sie OMEGA kontaktieren:

- 1. Auftragsnummer, unter der das Produkt GEKAUFT wurde,
- 2. Modell- und Seriennummer des Produkts unter Garantie und
- 3. Reparaturanweisungen und/oder spezifische Probleme im Zusammenhang mit dem Produkt.

BEI REPARATUREN, DIE **<u>NICHT VON DER GARANTIE</u> ABGEDECKT SIND,** wenden Sie sich

bezüglich der aktuellen Reparaturkosten an OMEGA. Halten Sie die folgenden Informationen bereit, BEVOR Sie OMEGA kontaktieren:

- 1. Auftragsnummer zur Übernahme der KOSTEN für die Reparatur,
- 2. Modell- und Seriennummer des Produkts und
- 3. Reparaturanweisungen und/oder spezifische Probleme im Zusammenhang mit dem Produkt.

Die Philosophie von OMEGA ist es, laufende Anpassungen an den Produkten, jedoch keine Änderungen der Modelle vorzunehmen, wann immer eine Verbesserung möglich ist. Auf diese Weise bieten wir unseren Kunden die neuesten Technologien und technischen Fortschritte.

OMEGA ist ein eingetragenes Warenzeichen der OMEGA ENGINEERING, INC.

©COPYRIGHT 2019 OMEGA ENGINEERING, INC. Alle Rechte vorbehalten. Dieses Dokument darf ohne die vorherige schriftliche Zustimmung der OMEGA ENGINEERING, INC nicht kopiert, fotokopiert, reproduziert, übersetzt oder auf ein elektronisches Medium oder in maschinenlesbare Form (im Ganzen oder in Teilen) übertragen werden.

Wo finde ich alles, was ich für die Prozessmessung und -steuerung benötige? Natürlich bei OMEGA! Online einkaufen auf omega.com

TEMPERATUR

- ✓ Thermoelement-, RTD- und Thermistorsonden, Steckverbinder, Paneele und Baugruppen
- ✓ Kabel: Thermoelement, RTD und Thermistor
- ✓ Kalibratoren und Eispunkt-Referenzen
- ✓ Recorder, Controller und Prozessmonitore
- ✓ Infrarot-Pyrometer

DRUCK, BELASTUNG UND KRAFT

- ✓ Wandler und Dehnungsmessstreifen
- Wägezellen und Manometer
- ✓ Verdrängungswandler
- ✓ Messgeräte und Zubehör

DURCHFLUSS/PEGEL

- ✓ Schwebekörper-Durchflussmesser, Gasmassenmesser und Durchflusscomputer
- ✓ Luftgeschwindigkeitsanzeigen
- ✓ Turbinen-/Schaufelradsysteme
- ✓ Summenmessgeräte und Chargenprüfgeräte

pH-WERT/LEITFÄHIGKEIT

- ✓ pH-Elektroden, Prüfgeräte und Zubehör
- ✓ Benchtop-/Labormessgeräte
- ✓ Controller, Kalibratoren, Simulatoren und Pumpen
- ✓ Industriegeräte für pH-Wert und Leitfähigkeit

DATENERFASSUNG

- ✓ Kommunikationsbasierte Erfassungssysteme
- ✓ Datenprotokollierungssysteme
- ✓ Drahtlose Sensoren, Sender und Empfänger
- ✓ Signalkonditionierer
- ✓ Datenerfassungssoftware

HEIZELEMENTE

- ✓ Heizkabel
- ✓ Heizpatronen und Heizbänder
- ✓ Tauchheizelemente und Bandheizelemente
- ✓ Flexible Heizelemente
- ✓ Laborheizelemente

UMGEBUNGSÜBERWACHUNG UND -STEUERUNG

- ✓ Mess- und Regelgeräte
- ✓ Refraktometer
- ✓ Pumpen und Schläuche
- ✓ Luft-, Boden- und Wasserüberwachungsgeräte
- ✓ Industriewasser- und Abwasseraufbereitung
- ✓ Messgeräte für pH-Wert, Leitfähigkeit und gelösten Sauerstoff

M5781/0521